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ABSTRACT
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This paper aims to identify the future Industry 4.0 technology (14T) centres of knowledge production in Europe. We expect
14Ts to thrive in regions where they can draw on local capabilities in 14T-related technologies. We use patent data to identify
14T-related technologies and find that 14Ts are positioned in the periphery of the knowledge space. The study shows that
European regions with a high potential in terms of 14T-related technologies are more likely to diversify successfully in
new 14Ts. We find huge differences across regions: some show high, but most regions show weak 14T potential.
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INTRODUCTION

In the last two centuries, Europe has been subject to three
industrial revolutions. These transformative periods
opened new windows of opportunities of economic growth
and prosperity, leading to the rise of new economic leaders
(Perez & Soete, 1988). These revolutions led to major
transformations in the geography of knowledge and inno-
vation (Hall & Preston, 1988; Marshall, 1987). The Third
Industrial Revolution led to the emergence of the Sunbelt
states (and Silicon Valley, in particular) and the decline of
manufacturing regions in the Rust Belt states in the Uni-
ted States (Lecuyer, 2006; Markusen et al., 1986; Scott,
1988). Europe underwent similar regional dynamics,
where the South East in the UK and Bavaria in Germany
presented themselves as the new centres of excellence and
innovation.

Scholars have argued that we are currently undergoing
a Fourth Industrial Revolution associated with Industry
4.0 (I4) (Liao et al., 2017; Lu, 2017; Méniére et al.,
2017; Popkova et al., 2019). Key technologies such as
cyber-physical systems, the Internet of Things (IoT),
robotics and artificial intelligence (AI) are expected to
affect a wide range of sectors. For instance, studies show

that a broad range of jobs and job tasks may be automated,
including non-routine tasks that use, for instance, big data
to diagnose diseases or selecting job applicants for inter-
views. A lot of attention goes to possible negative effects,
such as in the literature on automation that focuses on the
types of jobs that might be displaced or under threat (e.g.,
Acemoglu & Restrepo, 2019; Autor, 2015; Bessen et al.,
2019; Frey & Osborne, 2016).

I4 is expected to have effects on the geography of
knowledge production and innovation in Europe. Scholars
suggest that Industry 4.0 technologies (I4Ts) will open
new windows of opportunities for regions, create new
regional leaders and has the potential to shift the geogra-
phy of knowledge production in Europe (Gotz & Jan-
kowska, 2017; Gress & Kalafsky, 2015; Strange &
Zucchella, 2017). Case studies of regions show how 14 is
transforming local productive systems in some parts of
Europe (Bellandi et al., 2020; De Propris & Bailey,
2020). A few papers indicate that the geography of 14T
is highly uneven in Europe. Ciffolilli and Muscio (2018)
and Muscio and Ciffolilli (2020) show the uneven partici-
pation of NUTS-2 regions in collaborative 14 research
projects, while Méniére et al. (2017) used patent appli-
cations to identify the top EU regions in I4T.
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The main objective of the paper is to identify regions in
Europe that have the potential to participate in new
knowledge production in I4Ts. The novelty of the paper
is that we use the relatedness framework (Boschma,
2017; Hidalgo et al., 2018) that has been proven useful
to explain the potential of regions to diversify successfully
in new industries (Neftke et al., 2011), new technologies
(Rigby, 2015) and new jobs (Muneepeerakul et al.,
2013). First, we use patent data from the Organisation
for Economic Co-operation and Development’s
(OECD) REGPAT database (March 2018 edition) and
perform co-occurrence analysis to identify I4T-related
technologies, that is, technologies that are frequently com-
bined with I4Ts. This enables us to draw a knowledge
space, a network representation that shows the relatedness
between I4Ts and other technology fields. This study
shows that I4Ts are not positioned in the core of the
knowledge space. Some 14Ts are closely related to each
other, while others are not.

Second, we use the knowledge space to estimate the
impact of relatedness on the entry of I4Ts in 295
NUTS-2 regions in Europe. This helps us to understand
to what extent the knowledge base of regions impacts
their likelihood to become leaders in knowledge pro-
duction in I4Ts. Our findings show that the local presence
of I4-related technologies has a positive impact on regions
to develop a new specialization in I4 technologies over the
period 2002-16.

Third, we use the information of the geography of 14-
related technologies in Europe to map the potentials of all
European regions to become technological centres of
knowledge production in I4.

The remainder of the paper is structured as follows.
The next section gives a brief overview of the literature
on I4Ts and its geography. The third section provides
an analytical framework based on the principle of related-
ness to identify the potential of regions to diversify into
I4Ts, and it presents the 14 knowledge space. The fourth
section presents a regional diversification model in Europe
that estimates the impact of relatedness on the entry of
I4Ts in EU regions. The fifth section maps the future 14
centres of knowledge production in Europe. The sixth sec-
tion concludes.

INDUSTRY 4.0 TECHNOLOGIES AND
THEIR GEOGRAPHY

New digital technologies around the IoT, robotics, Al and
self-driving cars are expected to have a pervasive effect on a
wide range of sectors (Liao et al., 2017; Lu, 2017). While
previous industrial revolutions have been associated with
the increasing automation of repetitive physical work,
I4Ts are about the large-scale automation of entire groups
of tasks, including repetitive intellectual or non-routine
tasks (Méniére et al., 2017). Studies have attempted to
assess the possible negative consequences of automation
for jobs and workers, especially in terms of the number
and types of jobs and the particular work tasks that are
expected to be displaced or under threat. This has led to

fierce and ongoing debates among scholars about the
right empirical approach to assess the effect of automation
on the labour market, initiated by a fundamental critique
on the method proposed by Frey and Osborne (2016)
(Bessen et al., 2019; Nedelkoska & Quintini, 2018).

In the extensive literature on 14, there exists no consen-
sus on what I4T stands for (Alcacer & Cruz-Machado,
2019; Chiarello et al., 2018; Dallasega et al., 2018; Kamble
et al., 2018; Liao et al., 2017; Lu, 2017; Oztemel & Gur-
sev, 2020; Popkova et al., 2019; Valdes & Ilja Rudyk,
2017; Xu et al., 2018). There is no formal, well-accepted
and easy-to-apply classification of I4 activities. Some
scholars employ a broad definition of I4Ts. Here, 14T
stands for the massive deployment of the IoT, in which
objects with computing capabilities that are connected to
a data network operate autonomously, based on their
own data collection, or through data exchange with
other objects. Méniere et al. (2017), for instance, dis-
tinguish three activities in which I4Ts are found: (1)
core technologies (hardware, software, connectivity); (2)
enabling technologies (analytics, security, Al, position
determination, power supply, 3D systems, user interfaces);
and (3) application domains (home, personal, enterprise,
manufacturing, infrastructure, vehicles). Other scholars
use a narrower definition, such as Ciffolilli and Muscio
(2018), in which 14 is connected to smart factories in
which new digital and other technologies transform
value chains. Here, the focus is on the digitization of man-
ufacturing industries that gets integrated with new infor-
mation and communication technologies (ICTs).

No matter what definition is used, scholars tend to
agree that I4Ts will have an impact of the geography of
knowledge production (Ciffolilli & Muscio, 2018;
Meéniere et al., 2017), the geography of manufacturing
(Gress & Kalafsky, 2015; Muro et al., 2019), and the
location and organization of activities within value chains
(Strange & Zucchella, 2017). Case studies of regions show
how 14 is transforming local productive systems (Bellandi
et al., 2020; De Propris & Bailey, 2020). Muro et al.
(2019) found there are differences in the United States
between metropolitan areas and between rural and urban
communities with regard to their exposure to automation.
A few papers indicate that the geography of I4T is highly
uneven in Europe. Ciffolilli and Muscio (2018) examined
collaborative research in 14 in 294 NUTS-2 regions and
found it is highly concentrated in regions in south
Germany (Baden-Wirttemberg and Bavaria), North
Rhine-Westphalia, Rhéne-Alpes, Tle-de-France and
Lombardia. Eastern and Southern Europe participate in
14 collaborative research only to a limited extent. Méniere
et al. (2017) used data on patent applications to identify
the location of I4T's in Europe. They found that the top
I4T regions are also ranked high as top EU regions of
the Third Industrial Revolution.

Many regions have expressed the ambition to partici-
pate fully in I4Ts (Reischauer, 2018; Santos et al.,
2017). However, there is little understanding which
regions have actually the potential to diversify into and
develop the new technologies of the Fourth Industrial
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Revolution. This begs the question: What capabilities do
regions need to diversify successfully in 14 technologies?
The regional diversification literature (Hidalgo et al,,
2007; Neftke et al., 2011) claims that regional capabilities
condition which new activities will be feasible to develop
in regions, and which ones will not: regions are more likely
to develop new activities related to their existing activities.
This insight has been replicated in empirical studies
(Boschma, 2017). Neffke et al. (2011) found that an
industry is more likely to enter a region when technologi-
cally related to pre-existing industries in that region. Simi-
lar findings have been reported for NUTS-2 regions in the
EU (Cortinovis et al., 2017), and for prefectures in China
(Guo & He, 2017; He et al., 2018).

Scholars have used patent data to investigate the
potential of regions to diversify successfully in new tech-
nologies. Rigby (2015) and Boschma et al. (2015) used
measures of relatedness between patent classes to describe
the rise of new technologies in US cities. They constructed
a knowledge space to determine relatedness between tech-
nologies that is based either on co-occurrence of technol-
ogy classes on a patent document, or on citations across
technology classes. Studies find systematic evidence that
technologies related to pre-existing technologies had a
higher probability to enter metropolitan regions in the
United States (Boschma et al., 2015; Kogler et al., 2013;
Rigby, 2015) and NUTS-2 regions in the EU (Balland
et al., 2019). The thesis that new technologies do not
start from scratch has also been confirmed for specific
technologies, such as green technologies (Corradini,
2019; Montresor & Quatraro, 2019; Santoalha &
Boschma, 2021; van den Berge & Weterings, 2014),
renewable energy technologies (Li, 2020), fuel cell tech-
nology (Tanner, 2016), nanotechnologies (Colombelli
et al., 2014) and biotechnologies (Boschma et al., 2014).
Without exception, these studies confirm the importance
of the principle of relatedness (Hidalgo et al., 2018). How-
ever, this has not yet been tested for regional diversifica-
tion into I4Ts.

This paper builds on the related diversification frame-
work to identify potentials of regions to diversify and par-
ticipate in I4Ts. We examine whether the ability of

European regions to develop new technologies associated
with I4 is depending on capabilities related to their pre-
existing technological specializations. We test the extent
to which I4Ts build on existing local capabilities, or
whether they develop from scratch. We then use the relat-
edness framework to identify the future potentials of
European regions to develop I4T's by looking at the extent
to which they possess the required capabilities to do so.

MAPPING THE INDUSTRY
4.0-KNOWLEDGE SPACE

To map the geography of I4T potentials requires the
identification of the key technologies of 14. As outlined
above, this is a daunting task and a huge challenge because
there is no widely agreed and well-accepted classification
of I4 activities. For instance, Ciffolilli and Muscio
(2018) investigated the Seventh Framework Programs of
the EU and identified eight enabling technologies linked
to I4. Their classification of I4T’s builds on a taxonomy
of key research areas based on expert peer reviews. Chiar-
ello et al. (2018) identified a total of eight clusters of 14T's
using Wikipedia data.

To determine the major technologies of 14, we exam-
ined key references on I4, most of which are literature
reviews of 14 in specialized technology journals (Alcacer
& Cruz-Machado, 2019; Chiarello et al., 2018; Ciffolilli
& Muscio, 2018; Dallasega et al., 2018; Kamble et al.,
2018; Liao et al., 2017; Lu, 2017; Méniére et al., 2017
Oztemel & Gursev, 2020; Popkova et al., 2019;
Reischauer, 2018; Santos et al., 2017; Valdes & Ilja
Rudyk, 2017; Xu et al., 2018). Based on an extensive lit-
erature review, we distinguish 10 I4Ts: (1) additive man-
ufacturing; (2) Al; (3) augmented reality; (4)
autonomous robots; (5) autonomous vehicles; (6) cloud
computing; (7) cybersecurity; (8) machine tools; (9) quan-
tum computers; and (10) system integration. Doing so, we
follow the broad definition of 14 that includes but also goes
beyond the digitalization of manufacturing industries and
global value chains.

To map the geography of 14 knowledge production in
Europe, we need to (1) identify precisely the I4

Table 1. Industry 4.0 technology (14T) patent count per period.

14T Patents P1 (2002-06) Patents P2 (2007-11) Patents P3 (2012-16)
Additive manufacturing 823 1040 1739
Artificial intelligence 483 828 1321
Augmented reality 992 1673 2545
Autonomous robots 745 970 1154
Autonomous vehicles 1979 2457 3099
Cloud computing 65 97 224
Cybersecurity 11,501 11,513 10,237
Machine tools 4144 4326 4056
Quantum computers 2294 1255 266
System integration 538 2007 1326
Total 23,564 26,166 25,967
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Figure 1. Position of Industry 4.0 technologies (14Ts) in the knowledge space, 2012-16.

technological domains, (2) geolocate the regions where
they are being developed, and (3) measure how they con-
nect to other technologies, based on our relatedness frame-
work. We use the OECD’s REGPAT database (March
2018 edition) to identify I4T patents, assign them to tech-
nology classes and compute the degree of relatedness
between technology classes. OECD-REGPAT is a regio-
nalized patent dataset derived from PATSTAT (Maraut
et al., 2008). It contains patent applications to the Euro-
pean Patent Office (EPO) from 1977 to 2017. Patent
applications are regionalized at the NUTS-2 level by
inventor addresses.

First, we linked the 10 I4T's directly or indirectly to the
Cooperative Patent Classification (CPC). The CPC is one
of the most precise technological classifications, breaking
down technologies in approximately 250,000 categories.
For some 14T, this is straightforward to do, as for cloud
computing for instance, because all patents that make an
invention claim to the technology of grid computing is

classified under the category GO6F9/5072. For other
14T, we were able to reconstruct them indirectly by com-
bining subcategories, such as for the category of auton-
omous vehicles that combines subcategories such as
cruise control (B60W30/14) and the lidar system
(G01S17), which are key components of autonomous
vehicles technologies. Other 14 technologies, such as
the IoT or blockchain technologies, were very hard to
identify accurately and could not be isolated as separate
categories.

Table 1 shows the number of patents at EPO in each of
the 10 I4T categories for the period 2002-16." What can
be observed first is that there was a lot of patenting in 14T's
already at the beginning of the 21st century. This confirms
other studies that the first I4Ts emerged already decades
ago (Popkova et al., 2019; Valdes & Ilja Rudyk, 2017).
Second, patenting in I4Ts increased in the decade 2002—
11, despite the 2008 crisis, but after that, it more or less
stabilized. Third, patenting in cybersecurity is the most

REGIONAL STUDIES
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Figure 2. Relatedness between Industry 4.0 technologies (14Ts).

intense by far, followed by machine tools and autonomous
vehicles. Fourth, most 14T categories witness a strong
increase in number of patents, with the exception of cyber-
security and machine tools. The sharp drop in patenting in
quantum computers in Europe strikes the eye in particular.

The next step is to determine the degree of relatedness
between 14Ts, and between each 14T and all other tech-
nologies. This information is needed to test the idea that
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14 technologies will only thrive if they connect to an eco-
system of related technologies that will nurture their
growth by drawing on the specific knowledge bases in
regions (Balland et al., 2019; Rigby, 2015). There are
different ways of assessing the relatedness between activi-
ties (Boschma, 2017; Freire, 2017; Hidalgo et al., 2007).

To measure technological relatedness between patent
classes, we use the distribution of knowledge claims by
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Table 2. Summary statistics.
Statistic N Mean SD Minimum Maximum
Period 5800 2.500 0.500 2 3
Entry 4717 0.129 0.336 0.000 1.000
Relatedness density 5800 18.343 24144 0.000 99.980
GDP per capita (thousands) 4870 23.524 9.534 5.000 93.380
Population 5010 1,888,205 1,503,688 26,381 11,725,090
Education 5030 23.416 8.427 6.720 51.920
R&D 4720 1.414 1.150 0.070 7.080

Period = a numeric value corresponding to a given period; Entry = the number of entry events; Relatedness density = relatedness density metrics ranging
from 0 to 100; GDP per capita (thousands) = gross domestic product (€); Population = number of inhabitants; Education = Eurostat education score; and

R&D = Eurostat research and development score.

CPC class on each patent application to the EPO, follow-
ing Boschma et al. (2015) and Rigby (2015). This is done
by counting the number of EU patents for a given period
that contains a co-class pair, say 7 and /, and then standar-
dizing this count by the total number of patents that
record knowledge claims in I4T/CPC classes 7 and j.
Relatedness is, therefore, a standardized measure of the
frequency with which two I4T/CPC classes appear on
the same patent document. We use a standardization
method (Steijn, 2017) based on Van Eck and Waltman
(2009), as implemented in the relatedness function of
the EconGeo R package (Balland, 2017). Once we have
calculated relatedness between technologies, we can for-
malize relatedness between technologies as a network,
the so-called ‘knowledge space’. The knowledge space is
an 7*n network where the individual nodes 7 (i =1, ...,
n) represent technological categories (14T or CPC classes),
and the links between them indicate their degree of relat-
edness. We compute relatedness between each pair of
technologies i and j for three non-overlapping periods:
2002-06, 200711 and 2012-16.

Figure 1 is a graph visualization of the knowledge space
for the last period. I4T's tend to locate at the periphery of
this network, signalling that they build on capabilities that
are not generic, and not easy to find in other technologies.
It also indicates that I4Ts are novel technologies that
emerge outside the core of the network where most tech-
nologies are positioned. Most I4Ts tend to cluster around
similar technologies, while some I4T's are more isolated.
Additive manufacturing stands out in particular because
it is located a great distance from all the other 14Ts in
the knowledge space.

Figure 2 explores the relatedness between the 10 14T
in more detail. On the left-hand side, relatedness is dis-
played as a network (Figure 1), while on the right-hand
side relatedness is displayed as a heat map, with more
intense colours meaning a higher level of relatedness.
The highest levels of relatedness appear to be between
quantum computers and Al, and between machine tools
and autonomous robots. By and large, there is one knowl-
edge cluster around computer-related I4Ts (quantum
computers, Al, cloud computing, cybersecurity and system
integration), and a second knowledge cluster around
machine tools, autonomous robots and autonomous

vehicles.? Al seems to link the two clusters to some extent.
Augmented reality and additive manufacturing tend to be
more disconnected from the other I4Ts. In other words, 14
contains many dimensions that are not easy to describe
under one unifying label. The relatedness framework
reveals which of these dimensions are more tightly linked
to each other in terms of shared competences, and which
to a lesser extent.

MODELLING THE ENTRY OF 14Ts IN
EUROPEAN REGIONS

Using the information on the knowledge space, we ident-
ify the 14 knowledge structure of all NUTS-2 regions in
the EU-27 plus Iceland, Norway, Switzerland and the
UK. We are particularly interested in exploring the 14-
related knowledge cores of all regions, or how much of
the technology produced within each NUTS-2 region
(as captured by patents) tends to cluster around I4Ts,
which would signal a strong local environment for new
knowledge production in I4Ts.

To capture the potential of each region in Europe to
develop 14Ts, we calculated for each region the density
of technological knowledge production in the vicinity of
I4T i. Following Hidalgo et al. (2007), Rigby (2015)
and Balland et al. (2019), the density of knowledge pro-
duction around a given I4T i in region 7 at time #is derived
from the technological relatedness ¢; ; , of technology i to
all other technologies 7 (I4T's and non-14T's) in which the
region has a relative technological advantage (RTA),
divided by the sum of technological relatedness of technol-
ogy i to all the other technologies j in the reference region

at time #
Z P
JEj#i

%
Z%‘j

J#i

RELATEDNESS _DENSITY;,, = 100

RTA is a binary variable that takes a value of 1 when a
region has a greater share of patents in technology class i
than the reference group (all European regions), and 0
otherwise. A region 7 has RTA in the production of tech-
nological knowledge i (r =1, ..., 7;i =1, ..., %) such that
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Table 3. Diversification model (Industry 4.0 technologies — 14Ts).

(1) (2) (3) (4)
Relatedness density 0.008*** 0.007*** 0.007*** 0.007***
(0.001) (0.001) (0.001) (0.001)
GDP per capita 0.001 0.001 —0.0001
(0.001) (0.001) (0.001)
Population (log) 0.020*** 0.020*** 0.017*
(0.007) (0.007) (0.009)
R&D 0.001 —0.0005 —-0.004
(0.006) (0.006) (0.008)
Education 0.0003 0.001 0.007***
(0.001) (0.001) (0.002)
Artificial 0.063** 0.063**
intelligence (0.026) (0.027)
Augmented reality 0.043* 0.058**
(0.025) (0.026)
Autonomous 0.057** 0.093***
robots (0.025) (0.026)
Autonomous 0.050** 0.064**
vehicles (0.025) (0.027)
Cloud computing 0.018 0.036
(0.026) (0.028)
Cybersecurity -0.010 0.016
(0.025) (0.026)
Machine tools 0.049* 0.074%***
(0.026) (0.027)
Quantum -0.017 0.001
computers (0.025) (0.027)
System integration 0.014 0.028
(0.025) (0.026)
Time (period 3) —0.025** —0.043***
(0.012) (0.013)
Country fixed No No No Yes
effects
Constant 0.066*** —0.226** —0.248** —0.240*
(0.007) (0.108) (0.109) (0.125)
Observations 4717 3736 3736 3230
R? 0.041 0.036 0.044 0.063
Adjusted R? 0.041 0.035 0.040 0.052
Residual SE 0.329 (d.f. =4715) 0.338 (d.f. =3730) 0.337 (d.f. =3720) 0.332 (d.f. =3190)
F-statistic 202.779*** (d.f. = 1; 27.920*** (d.f. = 5; 11.361%** (d.f. = 15; 5.517*** (d.f. = 39;
4715) 3730) 3720) 3190)

Notes: GDP, gross domestic product; R&D, research and development; SE, standard error.

*p < 0.1, **p < 0.05, ***p < 0.01.

RTA,,,Z',[ =1 lf
patents, ,/ >, patents,
S, patents, ./ 3, 3, patents,

The higher the region’s score on relatedness density, the
closer, on average, its existing set of technologies are to

REGIONAL STUDIES

I4T. In other words, relatedness density reflects an over-
all average score of the potential of a region to develop a
specific I4T. Below, we test this assumption and assess
whether relatedness density indeed has a positive effect
on the probability of a region to diversify into a new

14T.
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Figure 3. Relatedness density in Industry 4.0 technology (14T) across European regions.
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Table 4. Top 20 European Union regions: relatedness density around all Industry 4.0
technologies (14Ts).?

Rank NUTS-2 Region Relatedness density
1 DE21 Oberbayern 72.09
2 FR10 {le-de-France 60.89
3 DE30 Berlin 50.22
4 SE12 Ostra Mellansverige 49.44
5 UKI2 Outer London 49.25
6 FI19 Lansi-Suomi 47.74
7 DET1 Stuttgart 47.39
8 AT13 Wien 45.41
9 PL22 Slg skie 45.04
10 DE27 Schwaben 44.85
11 ES30 Comunidad de Madrid 44.52
12 DED4 Chemnitz 4421
13 UK Inner London 43.66
14 Cz01 Praha 43.17
15 DE12 Karlsruhe 42.55
16 Cz02 Stredni Cechy 42.38
17 DE25 Mittelfranken 41.99
18 FR52 Bretagne 41.98
19 PL21 Matopolskie 41.58
20 DE40 Brandenburg 40.71

Note: *Excluding ‘cloud computing’ and ‘quantum computers’.

70
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Because we are interested in the entry of a new
specialization in a I4T, we estimate the probability
that a region develops a new RTA in a I4T. Following
Boschma et al. (2015) and Balland et al. (2019), our
main variable of interest is the relatedness density
between a I4T and the overall technological portfolio
of a region. We include control variables at the regional
level that may affect the entry probability of an I4T in a
region: gross domestic product (GDP) per capita, popu-
lation (log), educational attainment (share of those aged
30-34 that have completed tertiary education) and R&D
(gross expenditures for research and development). Data
are taken from Cambridge Econometrics and Eurostat.
Table 2 summarizes the descriptives statistics for the
variables.

All specifications are estimated at the region
technology period level. We use a linear probability
model to assess the probability that a region
specializes in a new I4T (entry) using the following
specification:

ENTRY,;, = B;RELATEDNESS _DENSITY, ;1
+ B,REGIONS, ,_1 + ¢; + a; + &,.i;

If a region already has RTA in I4T i in # — 1, then the

observation is removed from the analysis, because the

respective 14T i cannot enter by definition. If the region
does not already have RTA in I4T 7 in # — 1 but it does
in 7 then entry,;, = 1 (entry,;,= 0 otherwise). Regions, , 1
is a vector that summarizes the range of observable
time-varying regional characteristics (GDP per capita,
population, education and R&D). The baseline specifi-
cation is a two-way fixed-effects model where ¢; is a
I4T fixed effect, o, is a time fixed effect and &,,, is
a regression residual. Our panel consists of data for
295 NUTS-2 regions and 10 I4Ts over the period
2002-16. We average the data over non-overlapping
five-year periods, denoted by £ To dampen potential
endogeneity issues, all independent variables are lagged
by one period, denoted by # — 1.

Table 3 presents the main findings. In all entry model
specifications, we find that relatedness density has a posi-
tive and significant effect on the probability that a region
specializes (RTA >1) in a new I4T, which is expected
and consistent with other studies (Balland et al., 2019;
Boschma et al., 2015; Rigby, 2015). The effect of related-
ness is also strong: an increase of 10% in relatedness den-
sity in a region is associated with a 52-63% relative
increase in the entry probability of a given I4T in a region.’
We also find that regions with a larger population base are
more likely to enter in I4T. This is consistent with find-
ings that more complex technologies (such as I4T)

0 10 20 30

40 50 60 70

Figure 4. Relatedness density in autonomous vehicles across European regions.
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disproportionally concentrate in large cities (Balland &
Rigby, 2017; Balland et al. 2020). GDP per capita and
R&D in regions do not seem to matter, while the coeffi-
cient of tertiary education is only positive and significant
in model 4. In column 4, we also include country dummies
to control for country-specific features such as national
institutions, policy, etc.

MAPPING THE FUTURE INDUSTRY 4.0
CENTRES OF KNOWLEDGE PRODUCTION
IN EUROPE

The diversification model showed that relatedness density
is a good predictor for the entry of a new 14T in a region in
Europe. This makes us confident that relatedness density
can be used as a measure to map the potential of all EU
regions regarding their future diversification opportunities
in I4Ts.

Figure 3 shows a map of Europe with respect to relat-
edness density in all I4T’s. Relatedness density is computed
for the most recent period 2012-16. There are huge differ-
ences across European regions with respect to their poten-
tial future participation in I4Ts. Table 4 shows the top 20
European regions with the highest potential in I4Ts.
More than half of all top 20 regions in I4Ts comes from
only three countries in Europe, that is, Germany, France

and the UK. The top three consists of Oberbayern
(Munich), Ile-de-France (Paris) and Berlin, followed clo-
sely by Ostra Mellansverige and Outer London.

There are also significant differences regarding the
regions with the highest potentials in Europe between
the 10 I4Ts. Figures 4 and 5 show for all European regions
their scores on relatedness density in autonomous vehicles
and cybersecurity, respectively. The two maps look quite
different: for instance, German regions score high on
autonomous vehicles but low on cybersecurity. This is
because they represent two very different 14Ts positioned
far away from each other in the knowledge space
(Figure 2). This means the two I4Ts rely on different
related technologies that are also concentrated in different
regions in Europe. This explains why there is no single
geography of 14T in Europe.

How important it is to distinguish between the 10 I4Ts
is also shown in Table 5. It shows how different the geo-
graphies of future knowledge production in the 10 I4Ts in
Europe look like, reflecting the geographical distributions
of their most relevant regional capabilities. Appendix A in
the supplemental data online shows maps for all 14T's. The
findings on relatedness density for cloud computing and
quantum computers need to be interpreted with great cau-
tion, due to the low patent activity in these two I4Ts in
Europe (Table 1). Broadly speaking, German regions

T
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Figure 5. Relatedness density in cybersecurity across European regions.
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Table 5. Top 10 European regions: relatedness density around each Industry 4.0 technology (14T).

Artificial intelligence

System integration

Additive manufacturing

Tle-de-France (FR) 88.3 Mittelfranken (DE) 83.0 Oberbayern (DE) 72.8
Comunidad de Madrid (ES) 87.9 Rhone-Alpes (FR) 82.6 Zurich (CH) 71.7
South. and East. (IE) 87.5 Liguria (IT) 82.0 Unterfranken (DE) 71.5
Berlin (DE) 87.5 Wien (AT) 79.5 Schleswig-Holstein (DE) 66.8
Inner London (UK) 86.8 Herefordshire, Worcestershire 79.4 Bremen (DE) 66.8
and Warwickshire (UK)
Wien (AT) 85.5 Stuttgart (DE) 78.9 Dusseldorf (DE) 66.7
Trgndelag (NO) 85.4 Kassel (DE) 75.0 Veneto (IT) 65.9
Oberbayern (DE) 84.1 Pais Vasco (ES) 73.1 Schwaben (DE) 65.9
Provence-Alpes-Cote d'Azur (FR) 83.8 Berlin (DE) 73.0 Chemnitz (DE) 65.5
Surrey, East, and West Sussex (UK) 83.7 {le-de-France (FR) 73.0 Lineburg (DE) 64.8

Augmented reality

Autonomous vehicles

Autonomous robots Machine tools

Tle-de-France (FR) 72.4  Oberbayern (DE) 73.6 Schwaben (DE) 89.6 Schwaben (DE) 81.3
Tharingen (DE) 70.8 Tubingen (DE) 73.3 Pays de la Loire (FR) 87.6 Stuttgart (DE) 79.5
Surrey, East, and West Sussex 64.0 Schwaben (DE) 68.8 Pais Vasco (ES) 87.3 Karlsruhe (DE) 713
(UK)

Bretagne (FR) 63.9 Ostra Mellansverige 68.0 Oberbayern (DE) 86.3 Freiburg (DE) 711

(SE)
Inner London (UK) 62.9 Stuttgart (DE) 66.6 Piemonte (IT) 86.0 Tubingen (DE) 70.6
Yugozapaden (BG) 62.5 Smadland med 6arna  65.9 Smadland med 6arna  83.5 Oberbayern (DE) 66.6
(SE) (SE)
Lansi-Suomi (FI) 61.9 fle-de-France (FR) 65.1 Slaskie (PL) 83.0 Oberosterreich 64.6
(AT)
Kéarnten (AT) 61.7 Hannover (DE) 64.4 Stuttgart (DE) 81.6 Pays de la Loire 62.7
(FR)
Noord-Brabant (NL) 61.5 Freiburg (DE) 63.7 Freiburg (DE) 80.0 Veneto (IT) 61.4
Wien (AT) 61.0 Vastsverige (SE) 62.7 Karlsruhe (DE) 79.5 Pais Vasco (ES) 61.3
Cloud computing Cybersecurity Quantum computers

Helsinki-Uusimaa (Fl) 99.5  Surrey, East and West Sussex (UK)  85.0  Rhone-Alpes (FR) 90.2
Inner London (UK) 99.5  Provence-Alpes-Cote d'Azur (FR) 81.1  Berlin (DE) 85.9
Outer London (UK) 99.4  Bretagne (FR) 79.0  East Anglia (UK) 84.0
Kézép-Magyarorszag (HU) 99.4  Outer London (UK) 77.0  Aquitaine (FR) 83.9
Berkshire, Buckinghamshire, 99.1  Helsinki-Uusimaa (Fl) 76.3  Dresden (DE) 83.9
and Oxfordshire (UK)

Southern and Eastern (IE) 99.1 Comunidad de Madrid (ES) 72.5  Zuid-Holland (NL) 83.3
Basse-Normandie (FR) 98.8 lle-de-France (FR) 70.6  Southern and Eastern (IE) 82.9
Praha (C2) 98.7  Lénsi-Suomi (Fl) 70.1  Tle-de-France (FR) 82.0
Hampshire and Isle of Wight (UK)  98.3  Oberbayern (DE) 69.1 Comunidad de Madrid (ES)  80.8
Oberbayern (DE) 98.2  Hampshire and Isle of Wight (UK)  69.1 Inner London (UK) 80.6

such as Oberbayern and Stuttgart tend to dominate and
show high potentials in autonomous vehicles, machine
tools, autonomous robots, additive manufacturing and sys-
tem integration. UK regions tend to score high on related-
ness density in augmented reality. Potential in knowledge
production in artificial intelligence is high in UK regions,
but also fairly distributed across other European countries,

REGIONAL STUDIES

often found in their capital city regions, such as Ile-de-
France and Comunidad de Madrid. High potentials in
cybersecurity are found in regions in France, UK and Fin-
land in particular. At the same time, many European
countries are rarely mentioned, or not mentioned at all
in these top rankings, suggesting a weak technological
potential to develop I4Ts in the near future.
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Figure 6. Mapping Industry 4.0 technology (14T) opportunities of the fle-de-France (FR10) and Piemonte (ITC1).

This uneven opportunity to develop I4T is further
illustrated in Figure 6, which maps development opportu-
nities in all 10 I4Ts in the French region of Tle-de-France
and the Italian region of Piemonte. Relatedness density is
shown on the x-axis, while the y-axis indicates the number
of patents (log) in each I4T in the whole of Europe. What
can be observed is that Ile-de-France has a low I4T poten-
tial (low relatedness density) in machine tools, additive
manufacturing and system integration, but it has high
potential in cybersecurity and Al The case of Piemonte
tells a different story: this region has I4T potential in
autonomous robots, autonomous vehicles and machine
tools, which partly reflects its techno-industrial past, but
Piemonte has low potential in other I4Ts. This illustration
shows how important it is to develop an I4T policy that
defies a ‘one-size-fits-all’ framework, but instead is tai-
lor-made and targets I4-related capabilities in order to
increase the probability of successful policy intervention.

CONCLUSIONS

This paper aimed to identify the future I4T centres of
knowledge production in Europe. A thorough exploration
of the 14 literature showed there is no consensus on what
14T stands for. There is also no formal classification or list
of I4T technologies. We made an extensive literature
review of key publications on 14 that were often literature
reviews on 14 themselves. We followed a broad definition
of 14 that includes but also goes beyond the digitalization
of industries and value chains. We identified and distin-
guished 10 I4Ts: (1) additive manufacturing; (2) Al; (3)
augmented reality; (4) autonomous robots; (5) auton-
omous vehicles; (6) cloud computing; (7) cybersecurity;
(8) machine tools; (9) quantum computers; and (10) sys-
tem integration.

The study aims to apply insights from the regional
diversification literature (Boschma, 2017; Hidalgo et al.,
2018) to the study of the geography of 14 (De Propris &
Bailey, 2020). Linking the two literatures, we expected
I4Ts to thrive in regions where they can draw on resources
from I4-related technologies available at the regional scale.
We identified I14T-related technologies, that is, technol-
ogies that are frequently combined with I4Ts in patent
documents. This resulted in the construction of a knowl-
edge space, in which the level of relatedness between
I4Ts and all other technological fields is shown. We
found that I4T's are located at the periphery of the knowl-
edge space. Some 14T's tend to cluster around similar tech-
nologies, while other I4T's such as additive manufacturing
are more isolated. Broadly speaking, we identified a
knowledge cluster around computer-related 14Ts, and
another knowledge cluster centred on manufacturing-
related 14 technologies. This tends to be in line with our
broad take on I4 that includes many dimensions, and
which is hard to unite under a single, unifying label.

We used this I4-knowledge space to estimate the
impact of relatedness on the entry of I4Ts in NUTS-
2 regions in 31 European countries (EU-27 plus Ice-
land, Norway, Switzerland and the UK) during the
period 2002-16. As expected, we found that relatedness
has a strong and positive effect on the probability that a
region specializes in a new I4T. This shows that regions
with a high potential in terms of a strong local presence
of I4T-related technologies are more likely to diversify
successfully in new I4Ts. We also found that regions
with a larger population are more likely to enter new
14Ts.

Because relatedness seemed to be a good predictor of
new knowledge production in I4Ts in European regions
in the past (2002-16), we also used the relatedness

REGIONAL STUDIES
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measure to map the potential of European regions to con-
tribute to and participate in future knowledge production
in I4Ts. The map of future I4T centres of knowledge pro-
duction in Europe shows huge differences across regions.
German, French and UK regions tend to show the highest
probabilities to develop I4Ts in the future, while many
European regions show a weak potential to contribute to
new knowledge production in I4Ts. There are also signifi-
cant differences between the 10 I4Ts. We found no single
geography of 14T in Europe. Instead, we found many. Our
study shows this is because I14Ts rely on different related
technologies that are also located in different regions in
Europe. In other words, the geographies of specific 14T's
in Europe tend to reflect the geographical distributions
of their most relevant regional capabilities.

Our findings imply that public policy intervention that
aims to develop I4Ts should take as a point of departure
the particular I4T potentials that region possess. Regions
with a low or no I4T potential should think twice to invest
public funds in I4Ts, because the risk of policy failure is
high. Public policy should target those regions that have
related 14T capabilities, as these provide local assets that
might be exploited to make policy effective (Hallward-
Driemeier et al., 2020).

The paper is not without limitations, however. First,
we used patent data to capture potentials of regions to con-
tribute to new knowledge production in I4Ts. While
patents are a rich source of information, there might be
other sources of knowledge (embodied in R&D and skills
of people) that are highly relevant for I4Ts that are not
taken up by patent data.

Second, to identify regional potentials in new I4Ts,
there might be other factors besides relevant local capabili-
ties that might be crucial for regions to participate fully in
I4. Local university—industry linkages might be a precon-
dition to exploit fully local capabilities (D’Este et al., 2013;
Reischauer, 2018), but also knowledge links with other
regions that provide access to complementary capabilities
might enhance the ability of regions to contribute to
new knowledge creation in I4Ts (Balland & Boschma,
2021; Neftke et al., 2018).

Third, it might be the case that some relevant capabili-
ties are locally available, but regions might still lack the
critical mass to participate fully in I4Ts. This certainly
applies to the two emerging I4Ts of cloud computing
and quantum computers in which Europe is lagging
behind China and the United States. But even in these
cases, a thorough understanding of where relevant local
capabilities are concentrated is crucial to develop an effec-
tive 14T policy strategy.

Fourth, to complement this study, there is a need to look
more closely at the fields of economic application of I4T's in
regions. While we expect some overlap between the locations
of technology production of I4 identified in this paper and
the locations of industrial production and application of 14
in Europe, this is not necessarily the case. This should be
taken up in future research. This would bring important
insights in factors that may influence the rate of economic
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application of new I4T's, which is a key topic in the 14 litera-
ture (De Propris & Bailey, 2020).

Future studies should also focus on the consequences
of 14 for spatial inequalities in Europe. A promising
avenue is to study and assess the role of big companies
where crucial I4 knowledge is developed, applied and
concentrated. Balland et al. (2019) showed that complex
knowledge (also in I4) is heavily spatially concentrated
and contributes to increasing spatial inequality. Méniére
et al. (2017) estimated that 25 global ICT companies
take up about half of all patent applications in I4Ts,
especially in core technologies. Such research sheds
light on the role of power and big businesses that are
active in new I4Ts, and which are expected to shape
new spatial inequalities in Europe and beyond to a con-
siderable degree (Iammarino et al., 2019). Finally, this
relates to more fundamental questions to how society
and public policy should respond to I4. Concerns have
been raised regarding the monopoly power of giant
companies (Feldman et al., 2019) because they block
innovation, undermine workers’ rights and make jobs
obsolete, but also because they have negative impacts
on society at large, such as violating privacy and sub-
verting democratic processes through information dis-
tortion and electoral interference (Cooke, 2019). This
is part of a much larger debate in society which in
the end will impact the extent to which, and what
kinds of I4T’s will be produced and implemented, and
where and how.
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NOTES

1. The year 2016 is our final year, because there is a sig-
nificant drop in patents after 2016 because many patents
are still ‘under review’.

2. There are some interesting key links between machine
tools and digital technologies. It all relates to the transition
towards intelligent machine tools (IMT) or smart machine
tools (SMT). The key components of this transition
build heavily on recent development in Al and the
role of autonomous sensing, autonomous connection
(machine-to-machine, in particular), autonomous learning,
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autonomous optimization and autonomous execution. This
is part of the ‘physical AT’ wave, as Lee (2018) dubbed it.

3. The mean of entry is 0.12. In model 1, for instance, the
probability of entry increases (in absolute terms) by about
0.008 for any additional unit of relatedness density (scale
0-100). Therefore, an additional 10 points in relatedness
density boosts entry by about (10%0.008)/0.126 = 63%

(relative increase).
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